On k-ordered Hamiltonian graphs
نویسندگان
چکیده
A Hamiltonian graph G of order n is k-ordered, 2 ≤ k ≤ n, if for every sequence v1, v2, . . . , vk of k distinct vertices of G, there exists a Hamiltonian cycle that encounters v1, v2, . . . , vk in this order. Define f(k, n) as the smallest integer m for which any graph on n vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if n is sufficiently large in terms of k. Let g(k, n) = d2 e + b2c − 1. More precisely, we show that f(k, n) = g(k, n) if n ≥ 11k − 3. Furthermore, we show that f(k, n) ≥ g(k, n) for any n ≥ 2k. Finally we show that f(k, n) > g(k, n) if 2k ≤ n ≤ 3k − 6. c © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 17–25, 1999
منابع مشابه
On low degree k-ordered graphs
A simple graph G is k-ordered (respectively, k-ordered hamiltonian) if, for any sequence of k distinct vertices v1, . . . , vk of G, there exists a cycle (respectively, a hamiltonian cycle) in G containing these k vertices in the specified order. In 1997 Ng and Schultz introduced these concepts of cycle orderability, and motivated by the fact that k-orderedness of a graph implies (k − 1)-connec...
متن کاملk-ordered Graphs & Out-arc Pancyclicity on Digraphs
Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Preface Graph theory as a very popular area of discrete mathematics has rapidly been developed over the last couple of decades. Numerous theoretical results and countless applications to practical problems have been discovered. The concepts of k-ordered graphs and out-arc pancyclicity are two recent topics i...
متن کامل4-ordered-Hamiltonian problems of the generalized Petersen graph GP(n, 4)
AgraphG is k-ordered if for every sequence of k distinct vertices ofG, there exists a cycle inG containing these k vertices in the specified order. It is k-ordered-Hamiltonian if, in addition, the required cycle is a Hamiltonian cycle in G. The question of the existence of an infinite class of 3-regular 4-ordered-Hamiltonian graphs was posed in Ng and Schultz in 1997 [2]. At the time, the only ...
متن کاملSolution to an open problem on 4-ordered Hamiltonian graphs
A graphG is k-ordered if for any sequence of k distinct vertices ofG, there exists a cycle in G containing these k vertices in the specified order. It is k-ordered Hamiltonian if, in addition, the required cycle is Hamiltonian. The question of the existence of an infinite class of 3-regular 4-ordered Hamiltonian graphs was posed in 1997 [10]. At the time, the only known examples were K4 and K3,...
متن کاملk-ordered Hamiltonian graphs
A hamiltonian graph G of order n is k-ordered, 2 ≤ k ≤ n, if for every sequence v1, v2, . . . , vk of k distinct vertices of G, there exists a hamiltonian cycle that encounters v1, v2, . . . , vk in this order. Theorems by Dirac and Ore, presenting sufficient conditions for a graph to be hamiltonian, are generalized to k-ordered hamiltonian graphs. The existence of k-ordered graphs with small m...
متن کاملK-ordered Hamiltonicity of Iterated Line Graphs
A graph G of order n is k-ordered hamiltonian, 2 ≤ k ≤ n, if for every sequence v1, v2, . . . , vk of k distinct vertices of G, there exists a hamiltonian cycle that encounters v1, v2, . . . , vk in this order. In this paper, we generalize two well-known theorems of Chartrand on hamiltonicity of iterated line graphs to k-ordered hamiltonicity. We prove that if Ln(G) is k-ordered hamiltonian and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Graph Theory
دوره 32 شماره
صفحات -
تاریخ انتشار 1999